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Introduction

Infectious diseases involve all systems in the body and have a 
high incidence in all clinical departments, which lead to sepsis, 
infectious shock, and even death in serious cases.1,2 The ability to 
quickly identify the focus of the infection and pathogenic bacteria 
in patients and use targeted antibiotics is essential in treatment. 
Bacterial culture, serological immunology, and nucleic acid ex-
amination are widely used in clinical pathogenic microbiological 
identification; however, they all have different limitations, such as 
sensitivity, specificity, and detection cycle. In some hospitals, rare 

and unknown microorganisms are often not identified or cannot 
be identified quickly and accurately. Recently, metagenomic next-
generation sequencing (mNGS) has been developing rapidly and 
has gradually been applied in medical practice. Compared with 
the first generation of sequencing technology, mNGS, which is a 
high-throughput technology, directly measures the millions of nu-
cleic acid DNA’s sequences in a variety of specimens (Fig. 1).3,4 
According to the sequences obtained, which are compared with 
database information, the pathogenic bacteria can be identified. 
Therefore, mNGS is a faster and more accurate method than tradi-
tional laboratory microbial detection methods that provide greater 
assistance in the clinical diagnosis and treatment of patients with 
infectious diseases. The use of genetics and genomics to promote 
the study of infectious diseases is an important part of precision 
medicine, which could be the direction of development in the fu-
ture; therefore, diseases could be studied at the genetic level.

mNGS

Fleischmann et al.5 completed the first full sequence determination 
of the genome of Haemophilus influenzae that used gene sequenc-
ing technology in the 1990s. In 2008, three Australian transplant 
patients who received different organs from the same donor died 
successively from encephalopathy-related diseases from the do-
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nor. The pathogens were not detected by conventional pathogenic, 
immunological, or molecular biological means. Partial tissue sam-
ples from the donor and recipient were analyzed by next-generation 
sequencing (NGS) technology, both suggested the presence of an 
arenavirus infection, which was later confirmed by other means.6 In 
2010, a whole-genome sequence analysis based on NGS data from 
the cholera outbreak in the Haiti earthquake showed that the Vibrio 
cholera that triggered the outbreak was not of local origin, but was 
more closely related to a strain isolated from Asia and later con-
firmed by single nucleotide polymorphism analysis to be of Nepa-
lese origin.7,8 In addition, NGS provides strong evidence to control 
the spread of pathogenic bacteria, guiding the use of antimicrobials, 
and analyzing the drug resistance and virulence characteristics of 
bacteria.9–14 Recently, due to the continuous technological develop-
ment of NGS (Table 1), it has shown unique advantages and broad 
application prospects in infectious agent detection, pathogen biolog-
ical characterization, and molecular epidemiological analysis.15,16

Application of metagenomic NGS in infectious diseases

Infection of the respiratory system

Respiratory system infections are extremely prevalent, and through 

chest imaging, bacterial culture, and smears, and many patients re-
main with unclear infection pathogens and insensitivity to the se-
lected antibiotics. Some patients with the rapidly progressive disease 
develop life-threatening respiratory failure and infectious shock. 
mNGS detects pathogens from specimens such as bronchoalveolar 
lavage fluid (BALF), lung puncture/mediastinal lymph node punc-
ture/tracheal biopsy tissue, pleural effusion, and sputum.

BALF specimens

BALF is obtained by sampling during bronchoscopy. Previously, 
BALF from healthy humans was considered an aseptic specimen; 
however, with the continuous development and improvement in the 
level of testing, there is a bacterial community in the lung, which 
becomes the microbiome, and the microbiome of diseased lungs 
is distinctly different from that of healthy lungs.17 In 2018, Miao 
et al.18 found causative pathogens in 34% of BALF that was ob-
tained from infected or noninfected patients. Takeuchi et al.19 per-
formed mNGS on BALF from 10 children with respiratory failure 
and detected significant bacterial or viral sequences in 8 children, 
and eventually identified the pathogens in 3 children, which were 
difficult to identify by conventional methods. In addition, several 
cases and small sample studies of second-generation sequencing 
have successfully detected the causative pathogens, which led to 

Fig. 1. Flow chart for mNGS. This flowchart describes the basic steps of mNGS. mNGS: metagenomic next-generation sequencing.
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the recovery from the disease with targeted treatment.20–22

Lung puncture tissue specimens

Sometimes, BALF might be contaminated by pharyngeal coloniz-
ing bacteria from surgical operations and lung puncture tissue is 
less probable to be contaminated, which makes it more necessary 
and diagnostically effective, but relatively risky. Henan et al.23 
used mNGS to identify potential pathogens in lung puncture tis-
sues from 15 pulmonary infections, and the results showed that the 
sensitivity and specificity were 100.0% and 76.5% for bacteria and 
57.1% and 61.5% for fungi, respectively. mNGS compared with 
sputum culture, and the positive predictive values (42.9% for bac-
teria and 44.4% for fungi) were significantly lower than the nega-
tive predictive values (100% for bacteria and 72.7% for fungi).23

Sputum specimens

Sputum is the commonly used specimen that is checked for res-
piratory infections by smear or bacterial culture; however, sputum 
specimens are usually exposed to oropharyngeal colonizing bac-
teria and might become contaminated; therefore, mNGS is used 
when patients cannot tolerate bronchoscopy or other invasive pro-
cedures. In 2017, Feigelman et al.24 performed mNGS on sputum 
specimens from 6 cases of cystic pulmonary fibrosis (CPF), which 
provided a profile of the pulmonary pathogens of the disease and 
analyzed the function, classification, and drug resistance of the 
dominant pathogenic bacteria.

Pleural effusion specimens

There are more etiologies of pleural effusion, including infection, 
tumor, hypoproteinemia, and heart failure connective tissue dis-
ease. In addition, mNGS can be used to identify the pathogens in 
the infectious specimens and indicate the sensitive antibiotics.

Infections of the central nervous system

Neurological infectious diseases, such as encephalitis or men-
ingitis, often have unclear etiology in cerebrospinal fluid (CSF) 

and might be caused by pathogenic infections; however, there are 
many potential pathogens (bacteria, viruses, fungi, or parasites). 
Traditional testing, such as routine examination, biochemical ex-
amination, and bacterial culture often failed to detect them or miss 
them. Guo et al.25 found that the diagnostic sensitivity of bacte-
rial meningitis increased from 55.6% to 68.7% when mNGS was 
used. In a case report published by Hu et al.26 a 31-year-old HIV-
infected patient admitted to hospital in a critical condition with a 
Glasgow score of 3 was tested for Toxoplasma gondii by mNGS 
on CSF. Several cases have been reported in which the causative 
organism was found by mNGS of CSF.27

Infection of the bloodstream

Infectious diseases of the blood have a high mortality rate, such 
as infective endocarditis, with an annual incidence of 3:100,000 to 
1:10,000, and one-third of these patients died 1 year after diagnosis. 
The key to the treatment of infective endocarditis is the ability to 
rapidly identify the pathogen. Approximately 31% of patients have 
negative blood cultures due to early application of antibiotics or 
other factors, and these blood culture-negative infective endocar-
ditis often pose multiple diagnostic and therapeutic difficulties that 
cause significant harm to patients.28 In 2018, Cheng et al.29 per-
formed mNGS testing on blood specimens that were collected from 
seven patients with suspected infective endocarditis and confirmed 
that mNGS was helpful in the diagnosis and treatment of patients 
with infective endocarditis despite the negative blood bacterial 
cultures. In addition to improving the diagnostic efficacy of the 3 
days routine culture, mNGS helps to explore novel and unknown 
pathogens. From 2007 to 2010, a large number of cases of fever, 
thrombocytopenia, and hyperleukocytosis syndrome (FTLS) oc-
curred in Henan Province. Xu et al.30 performed mNGS on the sera 
of patients and found that this was a new bunyavirus, eventually 
named Henan fever virus (HNF virus). However, bacterial nucleic 
acids have been reported in healthy volunteers tested by mNGS, 
which could be potential contamination of the sampling process, 
and therefore, requires careful screening in clinical applications.31

Infections of the digestive system

Acute cholecystitis, acute gastroenteritis, and liver abscess are 

Table 1.  Sequencing platforms for the detection of pathogens

Sequencing 
Platforms Principle Advantage Disadvantage

Solid 5500 
× l15

Detect fluorescent signals based on 
sequential ligation of fluorescent probes

Realization of double base 
correction, proofreading while 
reducing initial data errors

Long sequencing time, partial 
read length and reference 
sequence cannot be matched

Illumina16 In PCR, a DNA fragment is attached 
to a primer for the reaction

Short sequencing time, low 
cost and better uniformity

Short sequencing read 
length, sequencable 
sample size is limited

Ion Torrent The technology is based on the use of semiconductor 
materials, semiconductor materials detect the 
release of H+ protons when DNA synthesis

Short sequencing time 
(2.5–4 h), low cost

Single-end sequencing

BGI Sequencing while connecting, 
combinatorial probe anchor synthesis

Low cost, large amount of 
data, large-scale whole-
genome sequencing

Read length is short (maximum 
read length 50–100 bp), poor 
operability of gene splicing

PCR: polymerase chain reaction; BGI: Beijing Genomics Institution.
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common infections of the digestive system. In 2018, Wu et al. 
performed mNGS on ascites and blood samples from 97 patients 
with acute abdominal disease; however, the bacteria analyzed by 
mNGS only partially matched those isolated using traditional cul-
ture methods and concluded that mNGS provided limited detec-
tion abilities of pathogens in ascites and blood specimens from 
patients with the acute abdominal disease.32 In a study on acute 
cholecystitis, metagenomic analysis was effective for rapid the 
diagnosis of the causative agent of acute cholecystitis, which in-
cluded the assessment of potential antibiotic susceptibility.33 In 
addition, mNGS is useful for the detection of infectious diarrhea 
pathogens.34mNGS was used to study the association between gut 
microbial alterations with type 2 diabetes and the association be-
tween atherosclerosis with the intestinal metagenome, because of 
the advanced nature of this technology.35,36

Infections of the ophthalmology

Diagnosis of ocular infections relies on intraocular fluid culture or 
polymerase chain reaction (PCR). In 2012, Eleinen et al. subjected 
corneal scraping samples that were collected from 88 patients with 
infectious corneal ulcers to bacterial culture, fungal culture, Gram 
stain, potassium hydroxide wet mount, and broad-range PCR with 
primer pairs targeted to the 16S (bacterial) and 18S (fungal) rRNA 
genes. The results showed that for bacterial and fungal keratitis, 
the sensitivity of the culture was 57.58% and 59.09%, respectively 
and the PCR sensitivity was 87.88% and 90.91%, respectively.37 In 
2017, Doan et al. detected PCR-positive and PCR-negative speci-
mens from intraocular infections by mNGS and concluded that the 
mNGS results were in good agreement with the PCR results and 
mNGS could be used to detect bacteria and fungi and viruses and 
provided information on drug resistance.38

Infections of the urinary system

Urinary tract infections have a high incidence and recurrence 
rate,39 and diagnosis mainly relies on urine culture. The most com-
mon pathogenic bacteria is Escherichia coli, followed by other 
Enterobacteriaceae, staphylococcus, streptococcus, fungi, and 
some pathogens that are difficult to cultures, such as viruses and 
tuberculosis.40 Moustafa et al.41 found that it was difficult to iden-
tify a large number of microorganisms in urine using traditional 
culture methods and that mNGS provided a more comprehensive 
and quantitative analysis of the microbial community in urine.41 
Barraud et al.42 demonstrated that mNGS provided drug resistance 
information in addition to the analysis of the microbiota in urine. 
In addition, mNGS simultaneously detects viruses, fungi, Candida 
albicans, cryptococcus, Mycobacterium tuberculosis, and myco-
plasma in urine specimens and the virulence and drug resistance 
of pathogens.43–46

mNGS versus traditional detection methods

The cost of traditional detection methods is lower and these meth-
ods are mature and relatively simple to operate. The sensitivity 
and specificity of traditional detection methods are poor, and they 
require a long detection time.

mNGS has the following advantages over traditional detection 
methods: (1) there is no bias, for example, if a specimen has C. 
albicans and Pneumocystis sp., faster growth of Pneumocystis 

sp. will affect the growth of C. albicans. Therefore, pathogenic 
cultures are biased and mNGS is unbiased for pathogenesis due 
to its different detection mechanism; (2) for infectious diseases, 
clinical symptoms, signs, history, epidemiology, and risk factors 
are used to infer which pathogens are probably present and to 
select the appropriate tests, but incomplete information in any 
one of the tests could lead to missed pathogens. Theoretically, 
mNGS detects the gene sequences of all pathogens in a specimen, 
and therefore, has broader coverage than other testing solutions; 
and (3) mNGS detects multiple pathogens simultaneously and in 
a shorter time.

Limitations of mNGS application

Despite the increasing clinical use and continuous enhancement of 
mNGS technology, the limitations or drawbacks of mNGS remain 
a major issue that cannot be ignored. The main disadvantage of 
mNGS is that most nucleic acids in patient specimens predomi-
nantly originate from human host backgrounds, with the major-
ity of detected sequences (typically >99%) coming from human 
hosts, which limits the overall analytical sensitivity of pathogen 
detection due to the relatively low number of sequenced microbial 
detected sequences (reads). This drawback is dealt with by targeted 
sequencing.47 In addition, other disadvantages include nucleic acid 
contamination in reaction kits, or from colonized bacteria and lab-
oratory procedures. Further research and optimization are required 
for mNGS sequencing depth, bioinformatics analysis, and clinical 
interpretation.25

The mNGS test cannot distinguish background, colonized mi-
crobes from pathogenic organisms, and requires a clinician to de-
cide based on the patient’s clinical manifestation, combined with 
other laboratory examination results.

Other limitation of mNGS use includes relatively low sensitiv-
ity for the detection of intracellular infected bacteria (e.g., M. tu-
berculosis, Legionella sp., and Brucella sp.), thick-walled bacteria 
and fungi, due to their rare release into body fluids. In addition, for 
pathogens with thick cell walls, such as Gram-positive bacteria, 
M. tuberculosis, fungi and parasites, the low efficiency of nucleic 
acid extraction results in lower positivity. RNA is susceptible to 
degradation and requires very low-temperature storage conditions 
that should be used in RNA sample transit and storage. Recently, 
several mNGSs have been reported for drug resistance detection, 
they are mainly for the study of individual pathogens, and difficul-
ties remain when using mNGS to detect drug resistance genes in 
pathogenic bacteria simultaneously.

Future directions

Infectious diseases have always been a major threat to human life 
and health, and the continuous renewal of antibiotics has signifi-
cantly reduced mortality. However, due to the development of hu-
man society, increase in human life expectancy, increase in malig-
nant tumor prevalence, and the widespread use of glucocorticoids 
and immunosuppressants, infectious diseases have displayed the 
following characteristics: (1) an increase in the rate of severe in-
fections; (2) an increase in rare or unknown pathogens; and (3) a 
significant increase in the virulence and drug resistance of patho-
gens. However, the widespread and early application of broad-
spectrum antibiotics and because 20%–60% of human-associated 
microorganisms are not culturable,48 leads to a low positive rate in 
traditional cultures. The failure to identify pathogens has increased 
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the difficulty in the diagnosis and treatment of infectious diseases, 
significantly prolonging the patient’s treatment cycle and increas-
ing morbidity and mortality. However, mNGS has disadvantages, 
such as it is expensive and might not provide a comprehensive or 
accurate report of antibiotic resistance, because of technical issues; 
however, due to the continuous improvement in the technology, 
mNGS remains a promising and practical means of clinical de-
tection to help the clinical treatment of infectious diseases. The 
development of databases, the genetic profiling of rare pathogens, 
studies into the mechanisms of pathogens, and the establishment of 
standardized processes for mNGS require further research.

Conclusions

mNGS obtains nucleic acid sequence information on pathogens 
directly from the specimen without the need for bacterial culture to 
identify them. It is not influenced by the application of antibiotics 
and has higher sensitivity and specificity than traditional detec-
tion methods. In addition, because mNGS sequences millions of 
nucleic acids at one time it can detect bacteria, fungi, viruses, my-
coplasma, chlamydia, and parasites in specimens simultaneously, 
which is not possible using other clinical detection methods.
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